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1. INTRODUCTION

In this report, we will derive the equations of motion for a
single-degreec-of-freedom, rate-integrating gyro, taking into account
asymmetry of design, manufacturing tolerances, and assembly tolerances
which result in non-ideal geometries and dynamics, We will also review
the test methods and the data reduction procedures used in determining the
performance coefficients of a gyro, Lastly, we will briefly investigate the

torques due to convection currents,

There are two complementary procedures commonly used for
determining the performance coefficients which we will review; they are:
a) tumble tests (either continuous rotation or discrete positions) and
b) precision linear vibration tests. In theory, a precision centrifuge with
a counter-rotating table (not necessarily a 1:1 counter-rotation) may be
used, However, in practice, the results are extremely sensitive to align-
ment of the counter-rotating table axis to the centrifuge axis, and thercfore,

that procedure will not be pursued further,

Data from tumble tests and linear vibration tests are commonly
reduced by using formulae which are partially or fully computer-automated.
There is selcom any thought given to the formulae used nor their applica-
bility to a particular gyro design or its application, The simplifying
assumptions (there are always such assumptions) used in the data reduction
procedures may or may not be appropriate for the particular design or the

application,

One of the principal purposes of this report is to review the
assumptions, explicit or implicit, in the choice of test method and/or data
reduction procedure, The test “ngineer must then review the error sources
and use his judgment as to the appropriateness of the test methods and the
data reduction. In some cases, analyses and/or tests may be required

prior to inaking a final judgment,



2. MISALIGNMENTS WITHIN A GYRO

2.1 Introduction

In this section, we will investigate the effects of non-ideal
geometries arising from design compromises, material variations, manu-
facturing tolerances, and assemnbly tolerances, It is usually assumed that
the true spin axis (SA) as determined by the bearing geometry, is normal
to the true output axis (OA) as determined by the gimbal pivot or suspension
geometry. The input axis (IA) is then taken to be normal to SA and OA,
Thus, the three axes form an orthngonal coordinate system, It is also
generally assumed that IA, OA, and SA are principal axes of inertia for
the float. In reality, none of these assumptions is likely to be exactly true,

2.2 Coordinate Systems

There are several coordinate systems that could be used in this
study, each having its relative advantages and disadvantages, We will use
three basic coordinate systems in our development: a) the reference sys-
tem attached to the gyro case as indicated by reference markings and/or
reference surfaces, b) one attached to the gyro float, and c) an inertially-
fixed coordinate system, Other auxiliary coordinate systems will ve used,

as convenient, such as an earth-fixed coordinate system.

In any single-degree-of-freedom gyro, there are two fairly
well defined axes; they are the spin axis SA and the output (pivot) axis OA,
Though these axes may be well defined by geometry, they are not necessarily
orthogonal, nor are they easy to locate in an assembled gyro. Assuming
that the pivot clearances are very small, as is usual, then any angular
motion of the gimbal relative to the gyro case must be about OA only,
whether or not OA is perpendicular to SA,

The three reference axes, which are indicated by reference
markings and/or reference (mounting) surfaces on the gyro case, are:
a) the input reference axis (IRA), b) the output reference axis (CRA), and

Preceding page blank 3.



c) the spin reference axis (SRA), These are nominally parallel to 1A, OA,
and SA, respectively, and form an orthogonal coordinate system such that

the vector cross product

TxJ =% (2-1)

where T, J, and K are unit vectors along IRA, ORA, and SRA, respectively.
The origin of this coordinate system is taken to be at the centroid (C) of the
gimbal (float) when at electrical null and at neutral buoyancy. For con-
venience, IRA, ORA, and SRA will be designated I, O, and S, respectively,
as shown in Fig. 2-1,

For the gimbal, we will choose an XYZ coordinate system with
the origin at C, the Y axis parallel to the true pivot axis (OA) and the YZ
plane parallel to the true spin axis (SA)., Let { % be the angle between
SA'and the Z axis, as indicated in Figure 2-1, where SA' is the projection
of SA on the YZ plane,

We will define the rotor as being the gyro wheel plus any asso-
ciated rotating parts such as hearing races and ball retainers. The gimbal
or float is defined as the complete assembly, including the rotor, that
rotates as a unit about OA relative to the gyro case,

YIOA)

Fig. 2-1. Gyro Reference Axes and Gimbal Coordinate System

ede



2,3 Moments of Inertia

Moments of inertia and products of inertia arise when we apply
Newton's Second Law of Motion to a rotating rigid body. It is assumed
that the reader is familiar with the definitions of moments of inertia and
products of inertia, and we will review only those additional facts which
are pertinent to our study of the gyro.

For any rigid body, with or without axes of symmetry, there
are always at least three orthogonal axes passing through the centroid for
which the products of inertia vanish, These axes are called principal axes
and the moments of inertia about these axes are known as principal moments
of inertia, Any axes of symmetry would be principal axes since the pro-
ducts of inertia about those axes would vanish,

The moment of inertia of the gimbal about any line p passing
through the centroid may be given in terms of the principal moments of
inertia J uu’ J o and J = about three orthogonal principal axes U, V
and W and the direction cosines, l.pu. 4 v’ and lpw of the line p with

p
respect to the principal axes,

T =3 22 43 4% 45 4F (2-2)

) uu “pu v pv  “ww Tpw
The principal moments of inertia are stationary values of Eq, (2-2), i.e.,
Jp is a maximum or a minimum when the line p coincides with a principal

axis,

Assume that we have determined, by some means, the principal
moments of inertia of the gimbal, and that the principal axes U, V, and W
arc nearly parallel to the I, ¢, and S axes, respectively, a: {5 usually the
case, Let Su. ¢+ and €. be the successive small Euler anclc :octations
about the U, V, and W axes, respectively, required to rotatc the UVW
coordinatec system into the 10S coordinate sy~iem. It can be shown that

the direction cosines are:

eHe



(2-3)

l’Iv = -"Ou = ew

The three principal moments of inertia of the gimbal usually dif-
fer from one another by less than an order of magnitude and the principal
axes, in general, are nearly coincident with the I, O, and S axes, ueu.
ev. and Ow are each less than 0,05 rad (< 3°). the moments of inertia of
the gimbal about the reference axes, as determined from Eqs. (2-2) and
(2-3), are approximated, without significant error, by:

y~3, +3 _6i+3 i~y
uu vV w wWWwW Vv uu
. E-—J z z 2w
Jo~T,, 02+, +3,,00~1 (2-4)

JS Juu ev + Jvv eu & wa wa

The above results should not be surprising, since the principal
moments of inertia are stationary values with zero slope,

.6.



3. DYNAMICS OF THE GIMBAL

31 Introduction

Any system of forces and torques applied to a rigid body may be
replaced by a single resultant force Fc acting through the centroid and a
single resultant torque ’!"c. For example, consider the single force F,
shown in Fig. 3-1(a) which is eccentric to the centroid C,

F Fy

(a) ic (b)

Fig. 3-1. Eccentric Applied Force

Apply two opposed forces Flc and F'lc at C in a line parallel to
the line of action of F', as shown in Fig. 3-1(b) and such that [F, | =
|Fy| =IF,l. Since the vector sum of ¥, and F|_is zero, the net jo:ce
acting on the body is unchanged, However, we can now consider the force
system to be a force Flc acting :hrough the cent:oid and a torque .'r']h due
to the couple formed by the fo. .es ?l and r'lc' The same procedure may
be followed for each non-central force, All the resultant forces acting
through the centroid may be summed vectorially to obtain but a single
resultant force ?'c and all the torques may be summed vectorially to obtain

a single resultant torque T .

The resulting motion of the rigid body may be considered as a
linear translation of the centroid due to the resultant force Fc and a change in
angular momentum due to the resultant torque Tc' Assuming a constaut
mass, the differential equations of motion are:



rc = d(ch)/dt = mT.c (3-1)

T, =dfH/a (3-2)
where

m = mass
Vc = velocity vector of centroid

:c = acceleration vector of centroid

H = angular momentum vector
t =time

Equation (3-1) states that the rate of change of the linear mo-
mentum (mvc) is equal in magnitude and direction to the resultant applied
force 1-"c acting through the centroid. Equation (3-2) states that the rate
of change of the angular momentum (H) is equal in magnitude and direction
to the resultant applied torque T_. Equation (3-2) is easily derived from
the basic Eq. (3-1),

Though we are primarily interested in he angular motions of
the gimbal and will stress the use of Eq, (3-2), tl.. gimbal structure is not
a perfectly rigid body and compliance torques resulting irom linear acceler-
ation of the centroid will also be considered. Of course, a gyro designer
must consider the translational forces acting on the pivots, rotor bearings,
and other parts for strength as well as for minimizing deflections.

3.2 Principal Axes of Rotor and Gimbal Structure

Because of tight manufacturing tolerances, accurate dynamic
balancing, and extreme care in assembly, the spin axis (SA) is a principal
axis of the rotor. The other principal axes of the rotor must be in a plane
normal to SA and passing through the centioid of the rotor, We will as-
sume that all axes in that plane and passing through the centroid are
principal axes of inertia and, therefore, the moments of inertia about
these axes are all equal, The above assumption is true for the vast

8a



majority of gyros, There are a few gyros, such as the 'Nutatron', which
are purposely designed to have a rotor with unequal moments of inertia
about their two radial principal axes of inertia, but such gyros are not
yet commercially significant,

Manufacturing and assembly tolerances for the gimbal do not
permit as accurate a knowledge of the location of the principal axes as we
had for the rotor alone, However, gimbals are generally designed so that
the principal axes are nominally parallel to the X, Y, and Z axes and
the Y axis passes through or close to the centroid C of the gimbal, There-
fore, we may use Eqs, (2-4) for the gimbal, without appreciable error, for

the vast majority of gyros and we will so assume,

3.3 Angular Momentum of Rotor and Gimbal

Since the only axes externally available are the refecrence axes
(I, O, and S in Fig, 2-1), we will determine the angular momentum of
the gyro with respect to these axes, Consider first the angular momentum
of the rotor relative to the gimbal,

The angular momentum components of the rotor relative to the

gimbal in the XYZ coordinate system are:

H =0
rx
ry e ¥r cex T THp Spx e
Heg e v = Hy
where
H =J_ w_=angular momentum of the rotor (plus asso-

ciated rotating parts) relative to the gimbal

J = moment of inertia of the rotor about its axis of
rotation

w_ = angular velocity of the rotor relative to the gimhal

:'r*' = misalignment angle as defined in Fig. 2-]



In order to determine the angular momentum components of the
rotor relative Lo the gimbal in the IOS system, we will perform the follow-
ing trans{ormations:

a) Rotate the XYZ system about the Y axis through the small

angle -9 required to bring the gimbal back to its electrical
null position,

b) Rotate the resulting system successively through the small
Euler angles { x* Cy» and 7 to bring it into coincidence with
the ICS system whizh is fix%d to the gyro case,
Since the rotation angles are all small (*< | rad), we may use
small angle approximations for the sines and cosines and neglect products
of the sines, We find the angular momentum of the rotor in the 10S

system relative to the gimbal is:
H ~Hlog=COT +H(C - C )T +HKE (3-4)
Assuming the principal axes of inertia of the gimbal are nominal-

ly parallel to the I, O, and S axes, then using Eqs., (2-4), the angular
momentum of the gimbal with the rotor locked in the IOS system is:

T ¥ -
‘t'rg STy T HIgwg 4 eg)T + g “’sF (3-5)
where
B, Bo, Wg = angular velocity components of the gyro case

relative to inertial space about the I, O, and S
axes, respectively (see Fig, 2-1).

P~ = angular velocity of the gimbal relative to the gyro case
about OA and cpo << 1,

The total angular momentum of the gimbal is the sum of Eqs,
(3-4) and (3-5), As a mnemonic device, with no loss in generality, let
(‘x = C.) = ¢y and Cy = { o then the total angular momentum of the gimbal

is:

10



n:nr + ﬂg - [Hr(cpo - (o) +Iy @ 1T

I

+ [H_ ¢ +Iug + &:o)]T +(H_ +Jgu K (3-6)

3.4 Torque Equations

The torque components about the I, O, and S axes required to
obtain changes in angular momentum are determined by applying Eqs. (3-2)

and (3-7), below, to Eg. (3-6).

di/dt = ws}-- mOF
dy/dt = mllz - uT (3=7)
dk/dt = wo-f - mﬁ

Ty~ Hlog+95=Cug) +Jy e + T v (Pg - (p)

=I5 wg = Ug = Tg) ug wg (3-8)
Toa' -Hr Lwl - (¢o - Co) ws] + Jo(wo + ‘po)

+I Cuw, = Ug=Jp) wg v (3-9)
Tg~> Hy log = Co) wo = gyl +Tg w5 + T, wp

+Jocpo 01-(JI-JO) wy wey (3-10)

It is customary, for purposes of comparison, to normalize the
torque components by dividing them by the angular momentum Hr of the
rotor relative to the gimbal, It is also common practice to break out the
normalized viscous drag torque (-Cc.pO/Hr) which opposes the angular

eifla



velocity :’0’ the normalized elastic restraint torque (-Ke 'pO/Hr) which
opposes the angular displacement Yo and lastly, the normalized command

torque (-Kri) where:

C = damping coefficient

Ke = elastic restraint coefficient

KT= torquer scale factor

i = torquing current /
4

The sign convention adopte?' for the torquing current is such
that a positive current will exert a nejative torque about OA or, equivalently,
will cause a positive precession ratefabout IA when the gimbal is mainttined

at its null position, The normaliz¢d torques about the I, O, and S axes are:

Ty : o S ~
'-';:Ml“wo*“’o'cl“’s“'_‘: ml+-;;;(w0-f.0)
J . J -J
r r
T K
o _ Cc e -
T “Mo - | %o - m_ %0 ~Kri= -ley - g - (o) vs)
J . an :I) JS-JI
i : sl A SR Sl : sanli T (3-12)
T J w
S _ S . r
n:-MS—-[(QJO-CO)mO-CIwIJ+ﬁ; ‘”H*w—r
J </
o 1- 70
*ﬁ:“;o “r-TH_ 1% ek

where MI and MS are the total applied normalized torque components about

the I and S axes, respectively, and Mo is the total normalized torque about

-lz.



the O axis plus the normalized viscous drag torque, the normalized elastic

restraint torque, and the normalized command torque, i.e,,
T K
.. 0, C° e
Mo 1w *H/-% *®_ %0 * Kr! (3-14)
If the misalignment angles CI and ( are negligible and if the
gimbal is maintained at its null position (q:o = 0), then Eqs, (3-11), (3-12),
(3-13) becomne the following well-known equations:
M, =zw +JI ; -Jo'iw
1" % "H 1T TH, o'%
dj~is Jeo =J
D et (3-15)

Note that if we = Wg = i = 0, then from the second of Eqs, (3-15), we see
that a positive applied normalized moment Mo will result in a negative pre-
cession rate when the gimbal is maintained at its null position,

ei3a
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4. MODEL EQUATION

In most applications and tests, the gimbal is maintained at or
close to its electricai null position by a platform or table slaved to the gyro
and/or by a feedback torquing current. The null error will depend on the
tightness of the servo loop. We may rewrite Eq, (3=-12) with ;’0 =99 = 0
and Mo expressed in black box form as a function of acceleration, Varia-
bles other than acceleration, such as power supply variations and tempera-
ture variations, are not usually included in the model equation, but are
treated as random variables which result in uncertainties in the drift rates.
Unfortunately, there are several model equations in common use. Some are
expressed in terms of drift rates, others are expressed in terms of normal-
ized torques which have the dimensions of drift rates but are of opposite
sign, Some equations are expressed in terms of acceleration inputs, where-
as others are expressed in terms of specific force inputs which have opposite
signs, Therefore, it is hardly surprising that there is some confusion, and

that some model equations are incorrect.

Up to this point, we have not specified any dimensional units in
the various equations, but merely expected them to be consistent. For
example, Eqs. (3-11), (3-12), and (3-13) would be dimensionally consistent
if the applied torques are in dyne-cm, the angular momentum in gm - cm?®/
s, the moments of inertia in gm - cmz. the angles in radians, the angular
rates in rad/s, and the angular accelerations in rad/sz. In our model
equation, we will adop? the more common practice of expreuing Wi ©
and w ¢ in deg/hr and wy in (deg/hr)/s. We will leave w_and w_in rad/

s and ra.d/sz. We will also adopt the practice of expressing the acceler-
ation in units of the local 8 value. The model equation and the definition of

symbols follow,
w, =D +Dia +D.a, + Dgac + Dia’ + D ad + D as
1°9F TN T Yoo T Ys?s T P T Poo*o T Yss?s

+ DIo “IaO + DOS 252g + DIS ajag + KTi - CO we

JA e w, (Jg=Jy) w

o) r Us P “s%

tH Vo + 206,300 & - - = 708,300 (4-1)
ei{Sa
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Note that the ! deg/hr = 1 3ec/s and 1 rad/s =~ 206,300 sec/s.

O Wy Wg = angular rate components of the gyro case about
the reference axes with respect to inertial
space - deg/hr

cbo = angular acceleration of the gyro case about
ORA -(deg/hr)/s

2, ag, 3g = components of total applied acceleration, a,
along the reference axes - g

as= 'a-,r -g = applied acceleration vector - g

:T = total acceleration vector with respect to inertial
space - g

g = gravity vector (in direction of maximum gravity
gradient) - g

4 = unit of acceleration equal in magnitude to the
local (or standard) gravity value

D = fixed restraint (bias) drift rate - deg/hr

DI' DO' DS = linear, acceleration-sensitive drift rate coef-
ficients - (deg/hr)/g

DII’ DOO' Dss= quadratic, acceleration-sensitive drift rate
coefficient - (deg/hr)/g’

D DA~cs» Dyc = cross-coupled, acceleration-sensitive drift rate

10, "0s* "Is coefficients - (deg/hr)/g

Ky = command rate scale factor (deg/hr)/A

i = command rate current - A

JI' JO' JS = moments of inertia o£ the gimbal about the refer-
ence axes - gm + cm

o = angular rate of the rotor relative to the gimbal -
rad/s

'.'r = angular accele?tion of the rotor relative to the
gimbal - rad/s

H X = angular momentum of the rotor relative to the

gimbai - gm « cm?/s

oibe



¢ Co = misalignment of SA with respect to SRA about IRA
and ORA, respectively - rad

Not all terms are necessarily required; the ones chosen depend
on the gyro design and on the application, For example, some gyro engi-
neers drop the DOO term since no satisfactory physical explanation for it
has been presented, nor is there incontrovertible evidence that it exists,

However, the term has been included for completeness.

In most gyro tests, and in strapdown applications, the command
rate-to-balance current is measured and/or recorded., It is usually assumed
that c;»_ = 0, particularly for those gyros with synchronous motors. This
assum;ation may not always be valid. A common inperfection occurring in
gyros is wheel hunting, which results from an interaction of the rotor
inertia with the magnetic stiffness of the motor. The combination acts as
a lightly-damped torsional pendulum, resulting in oscillation of the rotor
angular rate about the synchicnous value, The effect is started by wheel
disturbances and may or may not persist with time. Solving Eq. (4-1) for
the command rate-to-balance, with '.”r = 0, we have:

K.i = -(D_ + Dya, + Da + D.ag + DysaZ + D, a2+ Decal

T F ' P11 7" Yo% " Ps*s * “n*1 * Peo*o’ Uss?s
Jo -

* Dro*1*o * Pos*o®s * Prs1s! * % * €o ¥s "W “o

(Js - JI)wS wy

+ A 208, ~00 (4-2)

Eq. (4-2) will be assumed in all test data reduction for obtain-

ing the performance coefficients DF' etc.



5. TUMBLE TESTS

5.1 Introduction

In the usual tumble tests, the gyro is mounted on a turntable
whose axis of rotation is nominally parallel to the earth's polar axis, As
the turntable is rotated about its axis, the earth's gravity field is rotated
relative to the gyro and many or all of the gyro coefficients are exercised.
The command rate-to-balance current is measured at a series of table
angles and recorded. From the data thus obtained ancd auxiliary inforimation,

the gyro coefficients are determined.
Tumble runs are performed by either of two basic methods:

a) Discrete rotation runs in which the table is rotated to a
series of table angles and the average command rate-to-
balance current is measured at each table angle after
equilibrium is attained.

b) The table is rotated at a slow uniform rate (usually
< 20 x earth's rate) and the command rate-to-balance
current is recorded continuously, In either method, the
average command rate-to-balance current is determined
at a number of equally-spaced table angles and the gyro
coefficients are determined by the method of least squares.

5.2 Error Sources

There are many error sources in a tumble test, both static and

dynamic. Among the most important are the following:

a) misalignment of the table axis with respect to the earth's
polar axis,

b) misalignment of the gyro reference axes with respect to the
table axis and its zero reference position,

c) non-orthogonality of the gyro output axis and the spin axis,

d) convection torques due to density gradients (may be caused
by temperature gradients or by non-homogeneous fluid),

e) table axis of rotation changes with direction of rotation,

Preceding page blank -19-
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f) wobble of table axis,

g) torque signal lags due to uncompensated filters in the
torquer loop and/or torque recorders

h) motion of the gimbal relative to the gyro case due to off-
neutral buoyancy temperature or unbalances,

i) magnetic fields,

j) motion about non-principal axes of the gimbal,
k) bubbles, lint, or other contaminants in the fluid,
1) power supply variations,

m) pier motion

n) noisy bearings,

o) pivot friction torque due to off-neutral buoyancy tempera-
ture coupled with acceleration,
We will investigate, in some detail, error sources a), b), c)

and d). Error sources e) and {, can be measured, and either corrected or
the data compensated, though either may be difficult to accomplish, Sources
g) and h) are dynamic type errors whose magnitude and phase are functions
of table rate, Stray magnetic fields around the table should be eliminated,
as far as practical, and the gyro protected by a continuous magnetic shield
in order to control error source i), Error source j) may be minimized by

careful gyro design and by reasonable care in alignment, as will be shown,

The last five error sources k) - o) generally cause discontin-
uous and/or erratic command rate-to-balance traces, Usually, they are
random in nature and result in run-to-run variations which are frequently
difficult to diagnose, Bubbles or lint in the fluid may, under some
circumstances, appear to be a large, repeatable unbalance, or, under

some circumstances, they may act like elastic restraints, or they
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may cause dramatic shifts in the command rate-to-balance measurements,
Pjer tilts may be eliminated by automatic or manual leveling or the tilt
may be monitcred and the data corrected (which may be difficult).

5.3 Transformation of Coordinates

Let us derive the general transformation equations required to
go from inputs in an earth-fixed coordinate system to a gyro-case-fixed
coordinate system, including any additional inputs of the table relative to
the earth, In Fig. 5-1, let xyz be the earth-fixed coordinate system and
let uvw be the coordinate system fixed to the gyro case. Let TA be the
table axis, which is nominally coincident with the z axis, with the table
angle 0 measured from the xz plane,

TA 2
w
é
wi "Tt
= F 4
w

(a) (b)

Fig. 5-1. Earth and Gyro Coordinate Systems

The table axis is slightly misaligned with the 2z axis, as defined
by the angles sz and o, The w axis of the gyro is slightly misaligned with

respect to TA, as defined by the angles owT and B. Fig. 5-1(a) is
a view looking in the minus z direction and Fig. 5-1(b) is a view
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normal to the plane defined by TA and z axes wich the w axis rotated about

TA so that it is in the plane of TA and z. The angles 6Tz and 6w are

each << 1 radian, The angles ¢ and B may have any values from (')rto 2n,
Physically, the actual table axis may be skewed to the z axis, then TA

in Fig, (5-1) is taken to be the projection of the table axis on a plane con-
taining the z axis and parallel to the actual table axis, Similarly, the w
axis shown in Fig. (5-1) is the projection of the actual w axis on a plane

containing TA and parallel to the actual w axis,

Let X, 7, 7 be the vector components of carth rate o~ of
acceleration along the x, y and » axes, respectively, LetT be the vector
representing the table rate relative to earth, Leiu, v, and w be the total
resultant vector components along the u, v, and w axes, respectively, The
vector components in the uvw coordinate system, due to the inputs X, y, -
and't, are determined by the following transformations:

a) Rotate the xyz system about the z axis through the angle
o to form the X, v, 7| system,

b) Rotate the X, ¥y} %) system about the y, axis through the
angle b, to form the x, y, z, system, The z, axis now
coincides with TA, and the vector t is now introduced.

c¢) Rotate the x, y, », system about the v, axis through the
angle (B - « + 68) to form the X3 yg 7y System,

d) Rotate the X3 yq %3 System about the y ; axis through the
an;lc.bw-lv t.0 form the ?c4 Y4 74 System. The %4 NS now
coincides with the w axis,

e) Lastly, rotate the Xq4Yq? system ahout the 2, axis
through the angle -pto coincide with the u v w system,

N S~ y
Since 6Tz and owT are < 1 radian, we may use small angle

approximations for the trigonometric functions, i.e.,
cos sz >~ cos bwT =1

sin § T2~ 6
6

Tz and sin 6wT§ bw’r (5-1)
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After performing the above transformations and applying the
approximations of Eqs. (5-1), we find

u™xcos 9 +ysing - ?[6.1.z cos(8-a) + & .. cos )

-t bw.r cos P

V™ -xsin® +ycos 8 +z [b.rz sin(6 - &) - awT sin # ]
.T owor .inp (5.2)

WX [b.rz cos @ + 8 . cos(8+0)]+ Yy [oTz sin &

+ Ow.r sin(2+68)) +z +¢t

5. 4 Continuous Rotation Tumble Test

We will {first consider the tumble test in which the table is
rotated continuously and uniformly with respect to earth. The discrete
position tumble test will be investigated in a later section,

5.4.1 Position No, 1, ORA —> North

With the table axis nominally parallel to the earth's polar axis
EA, mount the gyro on the table so that ORA is nominally parallel to TA
and points north, and IRA points west when the table angle 6 = 0°. Fig.
5-2 shows the relative directior s of the various axes, Fig, 5-2(a) is a
view looking south along EA and Fig. 5-2(b) is a view normal to the plane
of EA and TA with ORA rotated about TA into the plane of EA and TA.
The misalignment angles 6TE and OON'I‘ correspond to b.rz and 6w'1‘ of
Fig. 5-1 and are greatly exaggerated.

The table will be rotated at a rate bw E' relative to earth, in a
counterclockwise direction (same direction as earth rate) and then in a
clockwise direction, i.e., 'b"E relative to earth,
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:ut

(b)
Fig. 5-2, Position No, 1

5.4.1.1 Counterclockwise Rotation of the Table: The angular velocity
components to be substituted in Eqs. (5-2) are x =0, y=0, z = op, and
t=bwg. The angular velocity vectors ®;, @o, and wg correspond to the
vectors u, w, and -v of Eqs, (5-2), .espectively.

w; = -op f(1+b) OONT cos B, + °'I'E cos(6-a))
L > (1+b)
og = e [(1+b) GONT sin § 1° OTE sin(6 - a)] (5-3)
©o=0
The acceleration components to be substituted in Eq. (5-2)
arex=t =0, y = cosA, z = sin\, where A is the astronomic latitude (positive

in northern hemisphere), The acceleration components a, Ag, 3g correspond
to the vectors u, w, and -v, respectively of Eqs. (5-3).

a; = cosh sing - sink [OON‘I‘ cos B, + 8.p cos(0-a)]
a5 =~ sin) + cos) LGONT sin(p, +6) + OTE sina )

ag = =cos) cosd + sin) [°0NT sin §; - OTE sin(0-9))
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At middle latitudes (25° to 60°) where practically all gyro
testing is performed, the effects of small misalignments on the accelera-
tion components will result in only second=order errors in the drift rates
and will be neglected.

a = cos) sing

a5y~ sin\ (5-4)

ag™> ~-C08\ cosf
Substitute Eqs. (5-3) and (5-4) in Eq. (4~2). Let iONk be the
command rate-to-balance current in Position No. 1 (ORA —> North) with

counterclockwise rotation at table angle 0y = ken' where Gn = 360%°/n
andk =1, 2, 3,...,n. The terms are arranged as in a Fourier series.

2

. _ . 2
xTonk = e [DF + Dy sin) + Do 8in“A+ l/Z(Dn+DSS) cos A\

+wp (1+D) OONT (cosp, - Co sin B,)

+ Is = 2 (1+b)% 6% ain 28]
12,500 0 r‘r-: ONT **® “P)

- [DI cos\+ 1/2 Dy #in 2h + wpb o (sina+ Cocos a)

Jo = T
: 2‘0‘65'73'@!'!!; wE (1+1) 8y bop cos(e+s ) Isinke_

Jo. =J
+ l/Z [DISCOSZX-&mz.j-O-g-Fr; w%: o,i.E cos 2« JSin Zkeﬂ
+ [DS cos) + l/ZDos sin2\- "’EbTE(co'a - CO sina)
s 12 (1+b) 8 r 8or. sin(ar + B1)] cos k8
" 705,300 “E OoNT Yrg 8inlot B))icos ke
Jo = J
2 s*t 2.2 o
+l/2[(Dn- SS) cos X-mdb-n: ulEOTESU’AZ& CObc.k.n
(5-5)
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5.4, 1.2 Clockwise Rotation of the Table: The setup is the same as in
Fig. 5-2, but the table is now rotated in the opposite direction without dis~
turbing the setup used for the counterclockwise rotation. The command
rate-to-balance squation is the same as Eq. (5-5), except that {1+ D) is

replaced by (1 -~ b), and the command rate-to-balance current is ika at
table angle 0, = k9 . Though the table is rotating clockwise, the table angle
Gk is still measured in a counterclockwise direction from the west, as
shown in Fig. 5-2(a).

5.4.1.3 Weighting the Data from Position No, 1: In order to eliminate
some of the effects of the gyro misalignment angle GONT and to minimize
the remaining effects, we will weight the data as follows:

e

Yonk Z 5 [(b=1) ionk ¥ (0+1) :ka] 2 --[1)F + D, sink

+ Do 8inZh + 1/2(Dyy + Dgg) cos)

oo
Je =7

S "I 2 2 2
* Iz gor g (V1) Sony in 28, 1- [Py cond

+1/2 DI sin2) +op GTE (sino + o cos®)] sin ken

(o]
+1/2(D oazk + s JI z 62 os 2 ]sin 2k6
1s © m Yg 9T € n

+ [DS cos\ +1/2 Dog 8in 2\ - wp °TE (cosa
- ¢o sina)] cos ken + . /2 [(Dn - Dss) coszk

Jeo =T
S "1 262

- m: we 8op sin 2e] cos Zken (5-6)

5.4.2 Position No, 2, ORA -> South

Position No. 2 is obtained from Position No, 1 by rotating the
gyro 180° about SRA so that ORA points south along TA and IRA points east
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when 6 = 0°, Rotating about SRA minimizes the time required for settling.

In the following analysis, it is assumed that the position of TA relative to EA
is unchanged. If this is not true in any particular test setup, then the analy-
sis must be appropriately modified and becomes more complicated. However,

in general, the angle that ORA makes with TA would not be the same as in
Position No, 1,

Fig. 5-3 shows the relative directions of the axes. Fig. 5-3(a)
is a view looking south along EA, and Fig. 5-3(b) is a view normal to the
plane of EA and TA with ORA rotated about TA into the plane of EA and TA.

EA
W (West)

(a) (b)

Fig. 5-3. Position No. 2

5.4.2.1 Counterclockwise Rotation of the Table: Let the table rotate

counterclockwise (é > 0) at a constant rate wa with respect to earth. The
angular velocity vectors to be substituted in Eqs, (5-2) arex =y =0, 7 = W
and t = wa. The angular velocity components W, W and we correspond
to -u, -w, and -v, respectively of Eqs. (5-2).
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ml"' o [(l+b) OWT cos ’2 - 6TE cos(6 -o)]
Lo R > (1+b)
(5-7)
wg > wp ((1+p) 605'1' sin pz - GTE sin (6-9))
wo = 0
The equivalent applied acceleration components along the gyro
reference axes are also determined from Eq<«, (5-2) and simplified,

aI = acos\ 8ind
‘O-. -sin\ (5-8)

ag > .CcO8A CcO88

Substitute Eqs. (5-7) and (5-8) in Eq. (4-2). Let iOSk be the
comiaand rate-to-balance current in Position No, 2 (ORA —> South) with
counterclockwise rotation at table angle O = ken. where k = 1,2,3,...,n.

- 2 2

top (1+b) OOST (cos B, - ¢o sin 92)

+ JS-JI 2(l+b)z 62 sin 28, ]
2, T A, “E osT %in 2B,

+ [DI cos\ - 1/2 Do sin 2\ + "EoTE (sina - (cosa)

Jo -1
¢ 26'68‘3'0'6111; w2 (1+b) bos Og cos(a+p,)] sin ko_

Ja =J
-1/2 [DIS coszk + TO'GSTTO'OI_H: wé O.i.E cos 2a] sin 2ke

+ [DS cos\ - 1/2 DOS sin 2\ + g OTE(cOla+Co sina)

«28e



Je =J
S 1 2
* 205,300 1 Uk (140) 8os Oy #inla-By))con ke,

+ l/Z[(Du-Dss) COIZX + -z-b-ss—m-n- WE 6TE sin ZG]COS Zke
(5-9)

5.4,2.2 Clockwise Rotation of the Table: The setup is the samae as in Fig,
5-3, but the table is rnow rotated in the clockwise direction without disturbing
the setup used for the counterclockwise rotation of the table, The command
rate-to-balance equation is the same as Eq. (5-9), except that (1+b) is re-
placed by (1-b), and the command rate-to-balance current is i'osk at table
angle 5, = k6 . The table angle © is still measured in a counterclockwise

direction from west as shown in Fig. 5-3(a).

5.4,2,3 Weighting the Data from Position No, 2: In order to eliminate
some of the effects of the gyro misalignment angle 605T and to minimize
other misalignment effects, we will weight the data as follows:

K
T
Wosk =25 [(b=1) igg, + (b+1) ifg, ]

_ . 2 2
=z -[DF - DO sinA + Doo sin“\ + l/Z(Dn+DSS) cos“ A

+ JS i JI < (bz-l) 62 sin 2p,]+ (D, cosA
11,5000 “E OST 2 I

«1/2 D

10 sin 2\ + we OTE(sina- CO cosa)]sin ken

Jo = J
- 1/2 [Dgg cos®\ + Z'GBSTS'UO'IH: wé o.i,E cos 2a ] sin 2k6_
+ [Ds cos\ - 1/2 Dos sin 2\
2
g TE (cosar + C sina)] cos ke + l/Z[(DLI ss)co:s A

+ s 2 82 sin 20 cos 2ke (5-10)
706,300 I, “E OTE :
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5.4.3 Control of Misalignment Errors

It is somewhat easier to investigate the impact of the misalign-
ment errors if we look at the sum and difference of Eqs. (5-6) and (5-10),

) 2 2
wONk +Wiosk = -[ZDF+ 2n00 #inA + (Dn+ Dss) cos A

toos -1 2 b2-1) (82 in 28, + 8% sin 2B
500, “E (P -1 (Sony #in 28, + 8oy #in 2))

- [DIO sin 2\ + 2 o GTE ¢o cosa ] sin ke

+ Z[Ds cos)\ + o OTE ¢o sina]cos ken

+ (Dyy = Dgg) cos?i cos 2ke_ (5-11)

Jo =3
) s=J1 2.2...2
Wonk -~ Wosk = -[2 Dg sim + TIZ, 500, wg (b"=1)(85p 8in 28,

- béST sin sz)] -Z[DI cosh + wp GTE sina ] sin k6n+[DIs coszx
7S "L 262 cos 2alain2ks, + (D g sin 23
+mmg TE €08 20]8in 2k | os ®in
Is=J1 2.2
= Z”EOTE cosa)cos ken - mm-; wp 6TE sin2acos Zk6n
(5-12)

It is easier, in general, to control the misalignment of the table
axis to the earth axis (angle OTE) than it is to control the misalignment of the
gyro output reference axis with respect to the table axis (angles OONT and
OOST)' The latter misalignment angles result from manufacturing and
assembly tolerances of the gyro, the mounting fixture and the table, In
addition, those angles may be a function of the clamping loads, the average
temperature, and the temperature gradients in the test setup and in the gyro,
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It is relatively easy to control GTE to less than 0. 001 rad (~3 min), and it
may be controlled as closely as 15 x 1076 rad (=3 %ec) on a very stable

pier,

The misalignment angle (gina well-designed and assembled
gyro should be less than 0,01 rad (=34 min); therefore, if we control og OTE
in Eq. (5-12) to a satisfactory degree, then the error terms containing
we OTE Coin Eq. (5=11) should be quite negligible and may be deleted,

At a latitude of 450. it is seen that wp GTE must be less than 7%
of D, and 5% of Dng if these coefficients are to be determined with an error
of less than 10%. For example, if Dos = 0,001 WE then 24wE OTE musst be
less than 0,1 x 0,001 wg or GTE must be less than 1 x 10° /2 =5 x 10" rad
(~10 sec) if DOS is to be determined with an error of less than 10%, It is
obviously far more difficult to determine DOS or DI accurately if they are
only 1 x 10'4 W though some manufacturers make even more doubtful

claims,

Let us now look at the remaining error terms; these involve the
ratio (Jg - J;)/H . Since iu general, the misalignment angles 6, ... and
GOST would be greater than GTE and (bz-l) > 1, then the errors in the con-
stant terms of the Fourier expansions are more significant than the errors
in the other Fourier coefficients, The Central .nertial Guidance Test
Facility at Holloman AFB normally performs its tests with b = 20 and, on
occasion, as high as b = 100, Let us look at the order of magnitude of these
errors by assuming some values for the various parameters which will give
errors greater than what would ordinarily be expected., Let Jg = J; = 1000
gm-cmz, H = 104 gme cmz/l, GONT = 608'1‘ = 0,05 rad, sin Zal = sin ZBZ
=0,5 b=100, and wgp = 15 deg/hr. Then,

T =3
Tl';.'m!ﬂ: “‘:: (v%-1) (O(Z)NT sin 28, + °és'r sin 28,) =

1000

= x 225 x 10,000 (0, 0025 x 0.5
’ ’

+ 0,0025 x 0,5) >~ 0,0014 deg/hr
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Therefore, even with these rather extreme values, the error would be
negligible in most applications. However, it would be well to estimate this
error for each new design and test setup in order to confirm that it is
ncgligible, If the error is not negligible, there are several steps we may
take to reduce it; they are: a) apply closer tolerances on the manufacture
and assembly of the gyro, b) apply closer tolerances on the manufacture
and assembly of the mounting fixture, c) correct any non-orthogonality of
the table face to the table axes, d) use a lower table rate, e) increase the
angular momentum of the gyro and/or decrease Jg - I

5.4.4 Gyro Coefficients from OA —> North and OA-» South Tests

If we assume that the misalignmeni terms of Eqs, (5-11) and
(5-12) are controlled and negligible compared to the gyro coefficients, as
is necessary, and we now apply the method of least squares to Eqs. (5-11)
and (5-12), then the following equations are obtained:

2 2
2D +2 DOO sin")\ + (Du+DSS) cos

H
F A= kz__:l(wor«k* ¥ osk!

2
Dio = 53tnzv kz=:1 (Wonk * Wosk! #in k8,

__ 1 =
Dg =o <oy kzz:l Wonk * Wosyk! €08 k6,

n

- 2
DII - Dss = — (wONk + ka) cos Zken

ncos A k=l

-1

n
Do = 3nstan kgl Wonk = Wosk

-1

n
Dy = o oo g;l (Wonk = Wosk! #in k8,
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2
Dy = —=7- L

sin 2ko
ncos A k=l n

Wonk = Vosk

2
DQS ey (W Nk ° wOS ) cos ko (5-13)
nsin\ ks © k n

Since there are only two equations involving the four unknown
coefficients DF' DII’ DOO' and DSS' it is necessary to obtain two more inde-
pendent equations involving DF and at least one of the other three coefficients,
or make some simplifying assumptions,

Some organizations assume that DOO =z 0, in which case only one
more independent equation is required. An additional tumble test with SRA
parallel to the earth's polar axis will provide the necessary relationship.
The equations for such a tumble test are derived in a manner similar to
that used {or Positions Nos, 1 and 2, Unfortunately, a new misalignment
error term appears which involves JO/Hr' These errors are probably
negligible in most cases, but if not, they are not so readily amenable to
minimization by design changes,

Other organizations assume that Dy and either Djj or Dgg are
zero, Equations (5-13) are then sufficient to determine all the remaining
coefficients. The assumption that D = 0 is justifiable on the somewhat
weak grounds that no theoretical analyses have shown a need for such a term,
However, it is difficult to justify setting either Dy, or Dgg equal to zero,
and certainly not one in preference to the other,

The most accurate method for obtaining the quad.atic and cross-
coupled coefficicnts, such as DII and D(E' is on a precision linear shaker,
The common electromagnetic shakers, used either with or without a slip
tahle, are not usually satisfactory since they may have substantial cross
axis and angular motions, This technique will be analyzed in Section 6.

We will now turn to the discrete position tumble test.

e33e



5.5 Discrete Posiiion Tumble Test

In the discrete position tumble test, the command rate-to-
b~iance current is measured at a series of table positions after equilibrium
aas been reached, Thus, some of the dynamic error terms are avoided, but

of course, other errors appear,

5.5.1 Position No, 1, ORA —=> North

The mounting position is identical to that described in Section
5.4.1 for the continuous rotation tumble test, The command rate-to-balance
current is measured at table angles 6, = ko where 6 _ = 360°/n and
k=12,3,...,n. The results are the same as given by Eq. (5-5) with b=0,
The gyro must be allowed to attain equilibrium at each table angle.

2

_ 2
&l‘iONk = -l'DF +DO sin\ + D00 sin“\ + l/Z(Dn +Dss) cos“\

+ wp OONT (cosll - CO sin pl)

Je =T
S 1 2 22
+m. = wp GONT sin Zpl]

- l',DI cos\ + 1/2 D;o sin 2\ + wp GTE (sina + ¢ cosa)

706,300 I, “E Sont brg cosle+ Byl sin ke,

J
2 2 ,2
+1/2 [DIS cos )\ +-z-ozs—5-6-oln; “E OTE cos Zd] sin Zken

’»
+ [Ds cos\ + 1/2 Dg sin 2)- "'EOTE (cosa-(, sina)

Jo =J

2
- S. I - og OONT OTE sin(a + pl)] cos ken
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2
oSl W2 82 4in 20] cos 2K (5-14)
705,300 H_ “E °TE %

Unlike the continuous tumble tests, it makes no difference,
theoretically, whether the table is rotated clockwise or counterclockwise
from one table angle to the next, providing equilibrium conditions are
attained at each table angle before readings are taken, and providing there
is no hysteresis due to pivot friction or other causes, If hysteresis effects
are suspected, then readings should be taken in both clockwise and counter-
clockwise rotation, The rotation from one position to another should be
smooth and unidirectional,

5.,5.2 Position No, 2, ORA —> South

The mounting position is identical to that described in Section
5.4.2. The command rate-to-balance current is measured at table angles
0y = ken’ where BiE= 360°nand k = 1, 2, 3,000sn, The results are the
same as given by Eq. (5-9) with b = 0. The same cautions regarding
equilibrium and hysteresis given in Section 5.5.1 also apply here.

KTiOSk = '[DF - Do sin\ + Doo linzx + l/Z(Dn+ Dss) coazl
+egp OOST (cos ’2 - ‘0 sin az)

b rpSmb w2 62 sin 28,7+ (D, con
12,500, “E JosT *In 2P ) * LDy cos

-1/2 Do 8in 2) + wp GTE (sino - Co cosa)

Jo =3
+ 2‘63%3‘6‘0‘19; 'ZE 8osT OrE cosletB,)] sin ke
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5.5.3

1/2[D.. cos®) + Is -1 2 82 2] sin 2k§
- Is €° WH;ETE”' sin cko,

+ [DS cos\ - 1/2 Dog sin 21 + wp °TE (cosa + (, sina)

Jo =3
s~ J1 2
* 705, 300 “E SosT SrE *inla- Bl]cos ko,
+ 1/2[(Dy = Do) cos) + s 1 2 62 _sin2a)cos 2k
n- Yss! © m“‘a s it h
(5-15)

Gyro Coefficients from OA —> North and OA —> South Tests

The sum and difference of Eqs. (5-14) and (5-15) are:

) 2 2
KI‘“ONR + iOSk) = -[ZDF + 2D sin"A + (Dn+Dss) cos A

+ op GONT (cos ’l - CO sin pl)
twp OOST (cos ’Z - o sin ﬁz)

+ ’s -y 2 6% sin2p, + 85 . sin2p.)]
ZTZ.‘S'G‘O‘H;"E ONT 17 %sT 2

- ‘DIO sin 2\ + Zup °‘I‘E (o cos @

Js=Jp 2
" 706,300 H, “E 81k [donT coslatB))

+ 8o cos(a+pz)]| sin ko_

+ ZDS cos) + 2 vp °TE CO sing

OS2 s (s in (0 +8,)
- 706, 300 1. °E b1 [fonr *in (048,

